
Buletinul Ştiinţific al Universităţii "Politelmica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICATII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 47(61), Fascicola 1-2,2002

VHDL DESCRIPTION OF PIC1400P

MICROCONTROLLER WITH PIPELINE

Ciprian Gavrincea 1, Daniel Mic2
, Stefan Oniga3

, Alin Tisan4

Abstract - This work presents a method for VHDL
description of a microcontroller with a pipelined
datapath. The microcontroller described in this paper
follows the specification of PIC14000 miciocontroller
made by Microchip Technology Inc. The project was
designed using Xilinx ISE 4 software and implemented
in XC4010XL FPGA circuit.
Keywords: VHDL, PIC1 4000, pipeline, data hazard,
control hazard

1 INTRODUCTION

Embedded control products are found in an market
segments: consumer, commercial, PC peripherals,
telecommunications, automotive, industrial etc. Most
often embedded control products must meet special
requirements: cost-effectiveness, low power, speed,
small footprint and a high level of system integrat ion.

II PIPEJ.,INED DATAPATH

r-.lost embedded control systems are designed around
a microcontroller that integrates on-chip program
memory, data memory and various peripheral
functions, such as timers and serial communication.
One way of improving the performance of an
embedded control system is to improve the
performance of its microcontroller. Speed is one of
the most important features of a microcontroller. A

An instruction cyc1e consists of ~ne or more machine
cycles. The tirst part of the cycle is referred ta as the
fetch phase, during which an instruction is obtained
from program memory. The second part of the cycle
is called the execution phase, in which the control unit
generates the necessary step sequence to perform the
required steps. The execution phase can be break up
into three parts. First the instruction is decoded and
the required operands are been read rrom the memory
or an IlO device. Second the required operation is
executed by ALU. Third the result is writing back to
memory or to an IlO device.
A conventional microcontroller process the instruction
cycle sequentially. This results in an idle ALU during
the fetch and a part ofthe execution phase, and an idle
memory during the second part of the execution
phase. A microcontroller with a pipelined architecture
elimioates the inefficiency of an idle ALU by fetching
the next instruction while the current one is executed.
To achieve this operation it is necessary to insert a
data storage registers between the memory and ALU.
The PIC 14000 microcontroller has basic pipeline
architecture. We have to make some modification ioto
its architecture to obtain a PIC14000 microcontroller
with full pipeline architecture.

Fig.l presents the simulation results of
PIC 14000 microcontroller with a typical datapath.

solution for improving the speed of a microcontroller
is to use a pipelined datapath.
A microcontroller depends on an external clock signal
to perform its function. The basÎc clock period is
called the clock cyclc. The microcontroller machine
cycle is made up of severaI clock cyc1es. A machine
cyc le is used to perform internal machine operations
or to accomplish external data transfer to memory or
LO ports.

Fig. 1 PIC 14000 microcontroller wifu a typical daupaL1

An instrUction cyc!e consists of four clock cycles. The
1 Heaching Assistant eng. 2) Teaching Assistant eng,

instrUction fetch (IF) and execute (EX) are pipe!ined .3)Le..:tu:er eng, 4) Teaching Assistall! eng,
l::1e.:trotcchincal Departament. North University of Baia Mare such the fetch takes one instruction cyc!~ while
P!','ne "'-10-95 533324, e-mail gcg\~hlbnuo eXt:cute takes an'Jther instruction cycle. In thc

61

,.

,

execution cycle, the instruction is decoded an Q1,

data memory is read an Q2 and written on Q4, the

instruction is executed on Q3.

Fig. 2 presents the simulation results of PIC14000

microcontroller with a pipelined datapath.

2 PIC 14000 microcontroller with a pipelined datapath.

It will take four clock cyc1es for an instruction to be
fetched, decoded and executed (2 clock cycles), but
on every c10ck cyc1e an instruction is fetched, another
instruction is decoded and another instruction is
executed. The microcontroller with pipelined datapath
is almost faur times faster then the microcontroller
with typical datapath. But in reality is only 3.4 times
faster, because it takes some time for filling up the
pipeline when the process is started and each time a
jump ar a conditional branch is executed.

III DATA AND CONTROL HAZARD

Two of the problems that reduce the throughput of a
pipelined datapath are: data hazard and control
hazard. Data hazards are timing problems that arise
because the execution of an operation in a pipelined is
delayed by one or more c10ck cyc1es from the time at
which the instruction containing the operation was
fetched. lf another instruction tries to use the result of
the operation as an uperand before the result is
available, it uses the old or stale value, which is very
likely to give a wrong result. The next example
illustrates two data hazards.

MOV Rl . R5

IDD R2 . Rl. R6
ADD ro .Rl. R2

RI<-R5

Fig 3 Data hazard

The MOV instruction places the contents of R5 into
RI in the first half of WB(write back), cycle 4. But,
as shown by the arrow, the frrst AOO instruction
reads RI in the last half of DOF(decode and operand
fctch), cycle 3, before it is written with the new result.
Thus the ADD instruction uses the stale value in Rl.
The result of this operation is placed in R2 in the first
half of WB, cycle 5. The second ADD instruction
reads both R 1 and R2. In the case of RI the value read
was written in the first half of WB, cycle 4, so it is the
write value. But the value of R2 is a sta le value. In
each of these cases the read of thc involved reO"isters

'" o~curs oile clock cycle too soon with respect to the

write of that register. The hardware solutian for this
kind of problem is to delay the pipeline with one
c1ack cycle when the data hazard condition is detected

~.rovP:1 ,PS
Aro~,IO:I.1<I:I

Aro~.IO:I.1<I:I

"rolU.P:I.~
"rolU.P:I.~

Fig 4 Data hazard solution

Control hazards are associated with branches in the
control fiow of the program. The following example
illustrates a control hazard. If RI is zero then a branch
ta the instruction 20 will occurred, skipping the
instructions 2 and 3. If Rl is non-zero, then the
instruction 2 and 3 will be executed. Assume that the
branch is taken to location 20 because RI 1S equal to
zero. The fact that RI equals zero is not detected untii
EX in cycle 3 of the instruction. PC is set to 20 on the
next c10ck edge, at the end of cycIe 3. The MOV
instructions from locations 2 and 3 are into the EX
and DOF stages. Even though the programmer's
intention was to skip them these Înstructions wil!
complete execution.

1 JZ20

2 MOV R2 ro
J. MOVRl R2

20. MOVR5 R6

tM.ruC1tons in cxcculÎon

Fig 5 Control hazard

No operation instructions can be used ta fix the
control hazard problem. When a jump instruction is
executed the next two instructions are already loaded
in ta the pipe line. If the jump condition is false the
two instructions will be executed. If the jump
condition is true the pipeline must be fiushed and
loaded with the instruction addressed by the jump.
This method is called branch prediction, because first
we assumed that the jump condition is false.

I JZ1Il
~ ~~IU

~ 'f.«NRI~

~OUOVPSI<I:I

la:lLlLI:lUD ~4'"J'I~Rti(arWtia:DI..aPII/I"''I:I'

PI.,.:tI..,.j~".'" -

Control hazard solution

IV VHDL DESCRlPTION

One of the main differences between a typical and a
pipeline microcontroller is the instruction decoder.
The VHDL description of the instruction decoder, for
the typical PIC14000 microcontroller, inc1udes faur
case statements while the description for tile pipeIined
microcontroller inciudes only three case statements.

case curentstate is case instruction 1 is

when decade => whenMOV=>
<statements>

case Înstructian is
whenADD=>

when MOV => <statements>
<statements> etc.

whenADD=> end case;
<statements>

etc. case instruction2 is

end case: when MOV =>
<statements>

when execute =>
whenADD=>

case instruction is <statements>
etc.

when MOV =>
<statements> end case;

when ADD => case instructian3 is
<statements>

etc. when MOV =>
<statements>

end case;
when ADD=>

wllen write _ back => <statements>
etc.

case instructian is
cnd case;

whenMOV=>
<statements> instructian1<= instruction;

instruction2<= instructian 1;
when A.QD => instruction3<= instructia2:

<statements>
etc.

end case:

end case:

The next paragraph presents a part of the VHDL
description for the instruction decoder of PIC 14000
pipelined microconlToller.

PROCESS (clk, reset)
BEGIN

if reset='O' then(................)

elsiî clkl'event and clkl ='1' then

ifIRI(7 downto O) IR2(7 downto O) then
hazard<= 1; -- data hazard detected

eise

case IRl(l3 DOWNTO 8) is

when NOP =>
if skip _ trig=' 1' then

inc -"pc <= 'O';
else

inc-..pcl <= '1';
end if;

when SUBWF =>
w_oen <= '1';
file_IDoen <= '1';
inc-..pc <= '1';

when DECF=>
file_IDoen <= '1 ';
inc-..pc <= '1';

whenGOTO=>
inc-"pcl <= 'O';

end case;

case IR2(13 DOWNTO 8) is

whenNOP=>

when SUBWF =>
alu_op <= ALUOP_SUB;
zero_wen <= '1';
carry_wen <='1';

whcn DECF=>
alu_op <= ALUOP_DEC;
zero_wen <= '1';

when GOTO =>
inc-..pc 1 <= 'O';
next state <= Q3;

end case;

case IR3(l3 DOWNTO 8) is

whenNOP=>
if skip_trig='l ' then

cIr_skip _trig <='1';
end if;
ir_en <= '1';

when SUBWF =>
zero_wen <= '1';
carry_wen <='1 ';
if dest = 'O' then w _ wen <= '1 ';

. else file_mwen <= '}'; end if;

when DECF=>
zero_wen <= '1';
if cpst 'O' then w_wen <= '1';
else file_mwen <= '1'; cnd if;

63

when GOTO=>
data_ir<=ir3(l0 downto O);
inc'yc2<='0';

jmp_en <= '}';
pch_en <= '} ';

inst_skip<= '}'
set_skip_trig <='1'; ;--control hazard triger
pch tria _ e <='1" ,

end case;

if skip _ trig l' then
IR3<=IR2;
IR2<="OOOOOOOOOOOOO";
IRI <="0000000000000";

else
if hazard =' 1 ' then

IR3<=IR2;
IR2<="OOOOOOOOOOOOO";

else

IR3<=IR2;

IR2<=IRl;

IRl<=inst;

end if;
end if;

END PROCESS;

PROCESS (set_skip_trig,cIr_skip_trig,reset)
BEGIN

if reset='O' then
skip _ trig<='O';

elsif cir_	skip _ trig=' 1 , then
skip _ trig<='O';

elsif set_skip_trig'event and set_skip_trig=h' then
skip _ trig<='} ';

end if;

END PROCESS;

,
The three case statements correspond to DOF, EX and
WB cycles. The IR1, IR2 and IR3 reaisters contain . . e
the mstructlOns that are 10aded into pipe line. Data
hazard is detected if the destination reaister for one
instruction is the same with the source r:gister for the
next instruction. A DO operat ion instruction is inserted
in the IR2 register if data hazard is detected. The
control h~d routine is triggered by skip_trig signal.
If there IS a true condition for a jump instruction
:kip_tri~ si?n~l is set to '1' and a no operatio~
mstruetlOn 15 mserted in the IRI and IR2 registers.
When a no operation instruction is process by the
microcontroller the only aetion taken is to increment

the program counter. A no operation instructi0n
introduced by the hazard routine has 110 aetion at alI
(the program counter is not incremented). This can be
done using a branch for NOP instruction in the DOF
stage.
The instruction decoder is the component which has
big modifications in its structure. The other
components of the PIC14000 microcontroller have
small timirlg modifieations. Because oftiming reasons
it is necessary to insert a regi5ter between ALU and
data bus. Another observation i5 that it i5 necessary to

set to 'O' the 5kip _trig signal after the hazard routine
had been started.

V CONCLUSION

Using a pipelined datapath it i5 possible to increase
the speed of PIC 14000 microcontroller without
changing its clock frequency. The slightly
modification in its structure does not involve an
irlcrease in its power consumption. The performance
of the PIC 14000 microcontroller with pipeline
architecture can be increase if a two edge clock is ta
be used. In both cases is necessary ta pay attention to
the tim ing problems between intern al components.

REFERENCES

[1] Daniel Mic, Stefan Oniga: Circuite Logice
Progranlabile, Risoprint, 2002.

[2] Edward Karalis: Digital Design Prillclples and
Computer Architecture, Prentiee Hali, 1997.

[3] Mark Zwolinski: Digital System Design with VHDL.
Prentice Hali, 2000.

[4] Morris Mano, Charles Kime: Logic and Computer
Design Fundamentals, Prentice Hali, 2000.

[5] Stefan Oniga: Circuite Digitale, Risoprint, 2002.
[6] Thomas L. Floyd: Digital Fundamentals, Prcntice Hall,

2000.
[7] xxx PIC 16/17 Microcontroller Data Book. Microchip.

1996.

