Buletinul Stiintific al Universitatii "Politehnica" din Timisoara

Seria ELECTRONICA si TELECOMUNICATII

TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 47(61), Fascicola 1-2, 2002

VHDL DESCRIPTION OF PIC14000
MICROCONTROLLER WITH PIPELINE

Ciprian Gavrincea', Daniel Mic?, Stefan Oniga’, Alin Tisan*

Abstract - This work presents a method for VHDL
description of a microcontroller with a pipelined
datapath. The microcontroller described in this paper
follows the specification of PIC14000 micracontroller
made by Microchip Technology Inc. The project was
designed using Xilinx ISE 4 software and implemented
in XC4010XL FPGA circuit.

Keywords: VHDL, PIC14000, pipeline, data hazard,
control hazard

I INTRODUCTION

Embedded control products are found in all market
segments: consumer, commercial, PC peripherals,
telecomnunications, actomotive, industrial etc. Most
often embedded control products must meet special
requirements: cost-effectiveness, low power, speed,
small footprint and a high level of system integration.

[1 PIPELINED DATAPATH

Most embedded control systems are designed around
a microcontroller that integrates on-chip program
memory, data memory and various peripheral
functions, such as timers and serial communication.
One way of improving the performance of an
embedded control system is to improve the
performance of its microcontroller. Speed is one of
the most important features of a microcontroller. A
solution for improving the speed of a microcontroller
is to use a pipelined datapath.

A microcontroller depends on an external clock signal
to perform its function. The basic clock period is
called the clock cycle. The microcontroiler machine
cvele is made up of several clock cycles. A machine
cyvele is used to perform internal machine operations
or to accomplish external data transfer to memory or
1O ports.

1'Teaching Assistant eng. 2) Teaching Assistant eng.
3Lecturer eng. 4) Teaching Assistant eng.
Flectrotechineal Departament. North University of Baia Mare
Phone =40-95 383324, e-muil; gegdubnuro

61

An instruction cycle consists of one or more machine
cycles. The first part of the cycle is referred to as the
fetch phase, during which an instruction is obtained
from program memory. The second part of the cycle
is called the execution phase, in which the control unit
generates the necessary step sequence to perform the
required steps. The execution phase can be break up
into three parts. First the instructior is decoded and
the required operands are been read from the memory
or an /O device. Second the required operation is
executed by ALU. Third the result is writing back to
memory or to an I/O device.
A conventional microcontroller process the instruction
cycle sequentially. This results in an idle ALU during
the fetch and a part of the execution phase, and an idle
memory during the second part of the execution
phase. A microcontroller with a pipelined architecture
eliminates the inefficiency of an idle ALU by fetching
the next instruction while the current one is executed.
To achieve this operation it is necessary to insert a
data storage registers between the memory and ALU.
The PIC14000 microcontroller has basic pipeline
architecture. We have to make some modification into
its architecture to obtain a PIC14000 microcontroller
with full pipeline architecture.

Fig.1 presents the simulation results of
PIC 14000 microcontroller with a typical datapath.

. hrn s i iaislalainte nisiotutals
e " TN U U UL UL UL
Rt | e R s [T o
A b]
b ! —
mers_oen _ [i T
fig_moen N i
e _mwen M [-
SRS J S
at eI I T I L TN 1L O - 7" S 3

Fig. 1 PIC14000 microcontroller with a typical datapath

An instruction cycle consists of four clock cycles. The
instruction fetch (IF) and execute (EX) are pipelined
such the fetch takes one instruciion cvcle while
exccute ftakes another instruction cycle. In the

execution cycle, the instruction is decoded on Q1,
data memory is read on Q2 and written on Q4, the
instruction is executed on Q3.

Fig. 2 presents the simulation results of P1C14000
microcontroiler with a pipelined datapath.

#2 0000000000500 F— e = e
OO - ——
waz_omn — OO —

Fig. 2 PIC14000 microcontroller with a pipelined datapath.

It will take four clock cycles for an instruction to be
fetched, decoded and executed (2 clock cycles), but
on every clock cycle an instruction is fetched, another
instruction is decoded and another instruction is
executed. The microcontroller with pipelined datapath
is almost four times faster then the microcontroller
with typical datapath. But in reality is only 3.4 times
faster, because it takes some time for filling up the
pipeline when the process is started and each time a
jump or a conditional branch is executed.

Il DATA AND CONTROL HAZARD

Two of the problems that reduce the throughput of a
pipelined datapath are: data hazard and control
hazard. Data hazards are timing problems that arise
because the execution of an operation in a pipelined is
delayed by one or more clock cycles from the time at
which the instruction containing the operation was
fetched. If another instruction tries to use the result of
the operation as an operand before the result is
available, it uses the old or stale value, which is very
likely to give a wrong result. The next example
illustrates two data hazards.

Write R2
MOVRI.RS RicRS | _F_| DOF | EX | wm [Write R2
ADDR2.RI.R6 R2-R1+R6 | IF DOF | EX WB
ADD R3 . R1.R2 R3e-RI+ R2 ¥ [poF | EX | WB |
Read RI
Read R1 and R2
Fig 3 Data hazard

The MOV instruction places the contents of RS into
R1 in the first half of WB(write back), cycle 4. But,
as shown by the arrow, the first ADD instruction
reads R1 in the last half of DOF(decode and operand
fetch), cycle 3, before it is written with the new result.
Thus the ADD instruction uses the stale value in R1.
The result of this operation is placed in R2 in the first
half of WB, cycle 5. The second ADD instruction
reads both R1 and R2. In the case of R1 the value read
was written in the first half of WB, cycle 4, so it is the
write value. But the value of R2 is a state value. In
each of these cases the read of the involved registers
oceurs one clock cycle too soon with respect to the

write of that register. The hardware solution for this
kind of problem is to delay the pipeline with one
clock cycle when the data hazard condition is detected

—- Rl dowhis d dasncd, gpekacddoyed

™2
MOV R BS v JooF [=% vﬁ
ADD RE R, RS wedl. | F | EoF IR iR
ADOR? R, B Rl | F | DOF] B | W
ADDIRE (R, RE Raegi-| T _JDOR| & L]
ATORS,RI,R2 TFlloor | X [w8 |

R dosnbieod dovmard, i dedoped

Fig 4 Data hazard solution

Control hazards are associated with branches in the
control flow of the program. The following example
illustrates a control hazard. If R1 is zero then a branch
to the instruction 20 will occurred, skipping the
instructions 2 and 3. If Rl is non-zero, then the
instruction 2 and 3 will be executed. Assume that the
branch is taken to location 20 because R1 is equal to
zero. The fact that R1 equals zero is not detected until
EX in cycle 3 of the instruction. PC is set to 20 on the
next clock edge, at the end of cycle 3. The MOV
instructions from locations 2 and 3 are into the EX
and DOF stages. Even though the programmer’s
intention was to skip them these instructions will
complete execution.

Ri=0
{ PCsetio 20

Loz IF | DOF | EX WB
3 MOVR2 R L por | & L3
3. MOVRIR2 IF | & - |
20. MOV RS R6 Rie-Ri+ RZ IF DOF | EX | WB

Instmction MOV R3 R6 fotchedt from target address ="

tons in e i
Fig 5 Control hazard

No operation instructions can be used to fix the
control hazard problem. When a jump instruction is
executed the next two instructions are already loaded
in to the pipeline. If the jump condition is false the
two instructions will be executed. If the jump
condition is true the pipeline must be flushed and
loaded with the instruction addressed by the jump.
This method is called branch prediction, because first
we assumed that the jump condition is false.

l—— cmud bead dacsod, juap codums sut

PCsam A
1 iZw LA e =
T MOV RY R [F [F| ® LI
3 MOVRIRY v) [& |
10 MOV RSRS Rie-RivRE L I N

Tom uosen FETY 25 RE (o (o g odd a3 -
Prpdiod fudaad

Control hazard solution

g

IV VHDL DESCRIPTION

One of the main differences between a typical and a
pipeline microcontroller is the instruction decoder.
The VHDL description of the instruction decoder, for
the typical PIC14000 microcontrotler, includes four
case statements while the description for the pipelined
microcontroller includes only three case statements,

case curentstate is
when decode =>
case instruction is

when MOV =>
<statements>

when ADD =>
<statements>
efc.
end case:
when execute =>

case instruction is

when MOV =>
<statements>

when ADD =>
<statements>
elc.
end case;
when write_back =>

case instruction is

when MOV =>
<statements>

when ADD =>
<statements>
erc.

end case;

end case:

case instructionl is

when MOV =>
<statements>

when ADD =>
<statements>
etc.
end case;

case instruction? is

when MOV =>
<staternents>

when ADD =>
<statements>
etc.
end case,

case instruction3 is

when MOV =>
<statermnents>

when ADD =>
<statemenis™>
etc.

end case;
instruction1 <= instruction;

instruction2<= instruction!;
instruction3<= instructio2;

The next paragraph presents a part of the VHDL
description for the instruction decoder of PIC14000

pipelined microcontroller.

PROCESS (clk, reset)
BEGIN

if reset="0"then(.................)
elsif clkl'event and clk1="1" then

if IR1{ 7 downto 0) = IR2(7 downto 0) then
hazard<=1; -- data hazard detected

else
case JRI(13 DOWNTO 8) is

when NOP =>
if skip_trig="1l' then
inc_pc <=0
else
inc_pcl <='1
end if;

when SUBWF =>
w_oen <='1"
file_moen <='1",
inc_pc <="'1}

when DECF =>
file moen <='1};
inc_pc <='1"

when GOTO =>
inc_pcl <='0"

end case;
case IR2(13 DOWNTO 8) is
when NOP =>

when SUBWF =>
alu_op <= ALUOP_SUB;
zero_wen <= "'l
carry_wen <='1";

when DECF =
alu_op <= ALUOP_DEC;
zero_wen <=1

when GOTO =>
inc_pcl <='0"
next_state <= Q3;
end case;

case IR3(13 DOWNTO 8) is

when NOP =>
if skip_trig="1" then
clr_skip_trig <='l";
end if;
ir_en <="'l";

when SUBWF =>
zero_wen <='1";
carry_wen <='1;

if dest ='0' then w_wen <="'1";
else file_mwen <="1"; end if]

when DECF =>
zero_wen <="'l’;
if dest = '0' then w_wen <="'1",
else file_mwen <="'1"; end if}

when GOTO =>
data_ir<=ir3(10 downto 0);
inc_pc2<='0"
jmp_en <="'14%
pch_en <='1%
inst_skip<="1"'
set_skip_trig <='1"; ;--control hazard triger
pch_trig <='1";
end case;

if skip_trig =’1" then
IR3<=IR2;
[R2<="0000000000000";
TR 1<="0000000000000";

else
if hazard =°1’ then
IR3<=[R2;
IR2<="0000000000000";
else
IR3<=[R2;
R2<=IR1;
IR 1<=inst;
end if}
end if;
END PROCESS;

PROCESS (set_skip_trig,clr_skip_trig,reset)
BEGIN

if reset="0" then
skip_trig<='0";

elsif clr_skip_trig="1' then
skip_trig<='0";

elsif set_skip_trig'event and set_skip_trig='1" then
skip_trig<='1";

end if;

END PROCESS;

The three case statements correspond to DOF, EX and
WB cycles. The IR1, IR2 and IR3 registers contain
the instructions that are loaded into pipeline. Data
hazard is detected if the destination register for one
instruction is the same with the source regxster for the
next instruction. A no operation instruction is inserted
in the IR2 register if data hazard is detected. The
control hazard routine is triggered by skip_trig signal.
If there is a true condition for a jump instruction,
skip_trig signal is set to ‘1’ and a no operation
instruction is inserted in the IR1 and IR2 registers.
When & no operation instruction is process by the
microcontroller the only action taken is to increment

the program counter. A no operation instruction
introduced by the hazard routine has no action at all
(the program counter is not incremented). This can be
done using a branch for NOP instruction in the DOF
stage.

The instruction decoder is the component which has
big modifications in its structure. The other
components of the PIC14000 microcontroller have
small timing modifications. Because of timing reasons
it is necessary to insert a register between ALU and
data bus. Another observation is that it is necessary to
set to ‘0’ the skip_trig signal after the hazard routine
had been started.

V CONCLUSION

Using a pipelined datapath it is possible to increase
the speed of PIC14000 microcontroller without
changing its clock frequency. The slightly
modification in its structure does not involve an
increase in its power consumption. The performance
of the PIC14000 microcontroller with pipeline
architecture can be increase if a two edge clock is to
be used. In both cases is necessary to pay attention to
the timing problems between internal components.

REFERENCES

[1] Daniel Mic, Stefan Oniga: Circuite Logice
Programabile, Risoprint, 2002.

{2] Edward Karalis: Digital Design Principles and
Computer Architecture, Prentice Hall, 1997,

[3] Mark Zwolinski: Digital System Design with VHDL.
Prentice Hall, 2000.

[4] Morris Mano, Charles Kime: Logic and Computer
Design Fundamentals, Prentice Hall, 2000.

[5] Stefan Oniga; Circuite Digitale, Risoprint. 2002.

[6] Thomas L. Floyd: Digital Fundamentals, Prentice Hall,
2000,

{71 xxx PIC16/17 Microcontroller Data Book, Microchip.
1996.

